Slowing DNA Transport Using Graphene-DNA Interactions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Slowing DNA Transport Using Graphene-DNA Interactions.

Slowing down DNA translocation speed in a nanopore is essential to ensuring reliable resolution of individual bases. Thin membrane materials enhance spatial resolution but simultaneously reduce the temporal resolution as the molecules translocate far too quickly. In this study, the effect of exposed graphene layers on the transport dynamics of both single (ssDNA) and double-stranded DNA (dsDNA)...

متن کامل

Detection of regional DNA methylation using DNA-graphene affinity interactions.

We report a new method for the detection of regional DNA methylation using base-dependent affinity interaction (i.e., adsorption) of DNA with graphene. Due to the strongest adsorption affinity of guanine bases towards graphene, bisulfite-treated guanine-enriched methylated DNA leads to a larger amount of the adsorbed DNA on the graphene-modified electrodes in comparison to the adenine-enriched ...

متن کامل

Competing Interactions in DNA Assembly on Graphene

We study the patterns that short strands of single-stranded DNA form on the top graphene surface of graphite. We find that the DNA assembles into two distinct patterns, small spherical particles and elongated networks. Known interaction models based on DNA-graphene binding, hydrophobic interactions, or models based on the purine/pyrimidine nature of the bases do not explain our observed crossov...

متن کامل

DNA-graphene interactions during translocation through nanogaps

We study how double-stranded DNA translocates through graphene nanogaps. Nanogaps are fabricated with a novel capillary-force induced graphene nanogap formation technique. DNA translocation signatures for nanogaps are qualitatively different from those obtained with circular nanopores, owing to the distinct shape of the gaps discussed here. Translocation time and conductance values vary by ∼ 10...

متن کامل

Slowing DNA translocation through a nanopore using a functionalized electrode.

Nanopores were fabricated with an integrated microscale Pd electrode coated with either a hydrogen-bonding or hydrophobic monolayer. Bare pores, or those coated with octanethiol, translocated single-stranded DNA with times of a few microseconds per base. Pores functionalized with 4(5)-(2-mercaptoethyl)-1H-imidazole-2-carboxamide slowed average translocation times, calculated as the duration of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advanced Functional Materials

سال: 2014

ISSN: 1616-301X

DOI: 10.1002/adfm.201403719